organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

G. Vasuki,^a V. Parthasarathi,^a* K. Ramamurthi,^a R. M Singh^b and Ambika Srivastava^b

^aDepartment of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and ^bDepartment of Chemistry, Banras Hindu University, Varanasi 221 005, India

Correspondence e-mail: sarati@bdu.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.125 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Phenyl-4-(p-toluidinomethylene)-5-oxazolone

The two crystallographically independent molecules in the asymmetric unit of the title compound, $C_{17}H_{14}N_2O_2$, have nearly the same molecular geometry. The planarity of the oxazoline ring is not affected by substitutions at the 2 and 4 positions. The structure is stabilized by $N-H\cdots$ O type intermolecular interactions.

Comment

The structure determination of the title compound, (I), was undertaken to study the effect of substitutions at the 2 and 4 positions on the oxazoline ring and the nature of hydrogen bonding. There are two crystallographically independent molecules in the asymmetric unit, Molecules I and II (atoms are labelled with addition letter A to the corresponding atoms of molecule II). The planarity of the oxazoline ring is not affected by the substitutions on the 2 and 4 positions. The dihedral angle between the phenyl ring and the oxazoline ring is $17.29 (10)^{\circ}$ [13.35 (10)°]. The dihedral angle between the oxazoline ring and the toluidino moiety is $26.68 (10)^{\circ}$ $[19.10 (9)^{\circ}]$. The N7–C6 bond $\{1.329 (2) \text{ Å} [1.322 (2) \text{ Å}]\}$ shows a partial double-bond character. This may be due to the delocalization of the lone pair of electrons of the N atom over the N7-C6=C4 moiety (Thiruvalluvar & Parthasarathi, 1995). The exocyclic bond angles N3-C2-C15 and N3A-C2A-C15A are 128.0 (2) and 128.1 (2)°, respectively. This increase from the normal 120° may be the consequence of the repulsion between the lone pair of electrons of the N and the H atom of C20 and C20A (Vijayalakshmi et al., 1998). In the crystal, the N-H groups of the molecules are involved in N- $H \cdot \cdot \cdot O$ type intermolecular hydrogen bonds (Table 2).

Experimental

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Triethylorthoformate (3.32 ml, 20 mmol) and acetic anhydride (3.57 ml, 38 mmol) were added to *N*-benzoylglycine (3.580 g, 20 mmol). The resulting reaction mixture was refluxed for 30 min and

Received 13 December 2000 Accepted 15 January 2001 Online 19 January 2001

Figure 1

The molecular structure of (I) showing 30% probability displacement ellipsoids.

then kept in a freezer overnight. The precipitate of 4-(ethoxymethylene)-2-phenyl-5-oxazolone was filtered and washed with petroleum ether and dried. Equimolar quantities of 4-(ethoxymethylene)-2-phenyl-5-oxazolone and *p*-toluidine were taken in 10 ml of ethanol and the reaction mixture was refluxed for 2 h. On cooling, a precipitate of (I) was obtained, which was washed with petroleum ether and ethanol and then recrystallized from ethanol.

Crystal data

 $\begin{array}{l} C_{17}H_{14}N_2O_2\\ M_r=278.30\\ \text{Monoclinic, }P2_1/a\\ a=19.457~(2)~\text{\AA}\\ b=6.442~(1)~\text{\AA}\\ c=24.619~(1)~\text{\AA}\\ \beta=110.95~(8)^\circ\\ V=2882.1~(5)~\text{\AA}^3\\ Z=8 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.977$, $T_{max} = 0.999$ 5422 measured reflections 5130 independent reflections 4460 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.065130 reflections 380 parameters H-atom parameters constrained $D_x = 1.283 \text{ Mg m}^{-3}$ Cu K α radiation Cell parameters from 25 reflections $\theta = 25-35^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 293 (2) K Plate, green $0.30 \times 0.15 \times 0.10 \text{ mm}$

 $\begin{aligned} R_{\rm int} &= 0.014 \\ \theta_{\rm max} &= 68.0^{\circ} \\ h &= -22 \rightarrow 21 \\ k &= 0 \rightarrow 7 \\ l &= 0 \rightarrow 29 \\ 2 \text{ standard reflections} \\ \text{frequency: 120 min} \\ \text{intensity decay: none} \end{aligned}$

$$\begin{split} w &= 1/[\sigma^2(F_o{}^2) + (0.0634P)^2 \\ &+ 0.9752P] \\ \text{where } P &= (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.25 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.17 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL97} \\ \text{Extinction coefficient: } 0.0016 (1) \end{split}$$

Tabl	e 1
------	-----

Selected	geometric	parameters	(Å, °).
----------	-----------	------------	-------	----

N3-C2	1.277 (2)	N3A - C2A	1.282 (2)
N3-C4	1.400 (2)	N3A - C4A	1.402 (2)
N7-C8	1.417 (2)	N7A - C8A	1.416 (2)
C4-C6	1.362 (2)	C4A-C6A	1.370 (2)
C8-N7-C6-C4	-178.7 (2)	C8A-N7A-C6A-C4A	180.0 (2)
C6-N7-C8-C13	23.7 (3)	C6A-N7A-C8A-C13A	-20.9 (3)

Table 2Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7 - H7 \cdots O5^i$	0.95	1.91	2.822 (2)	161
$N7A - H7A \cdots O5A^{ii}$	0.92	1.98	2.809 (2)	151

Symmetry codes: (i) x, 1 + y, z; (ii) x, y - 1, z.

All but methyl group H atoms were located from the difference map and were included in the structure-factor calculations with isotropic displacement parameters equal to $1.1U_{eq}$ of their respective carrier atom, but their positional parameters were not refined (C–H distances are in the range 0.95–1.10 Å), whereas the methyl H atoms were geometrically fixed and a riding model was used for their refinement.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ZORTEP* (Zsolnai, 1997); software used to prepare material for publication: *SHELXL*97.

One of the authors GV thanks the UGC, India, for the award of FIP fellowship (1999–2000) and Mrs L. Vijayalakshmi for helping in the preparation of the manuscript.

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Thiruvalluvar, A. & Parthasarathi, V. (1995). Acta Cryst. C51, 2641-2643.
- Vijayalakshmi, L., Parthasarathi, V., Perumal, P. T. & Majo, V. J. (1998). Acta Cryst. C54, 1683–1685.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.